

Technology transfer to industry and novel processing techniques

P. Berrutti FNAL
PIP-II Technical Workshop
12/3/2020

A Partnership of:

US/DOE

India/DAE

Italy/INFN

UK/UKRI-STFC

France/CEA, CNRS/IN2P3

Poland/WUST

SSR2 bare cavities processing and testing flow

SSR2 bulk and light rotational BCP

• Both bare and Jacketed SSR2 BCP will be done at ANL facility, following RFD cavity experience: rotational BCP through both CP and VP.

SSR2 cavity model on rotational BCP tool at ANL

SSR1 cavity during conventional BCP at ANL

Reasons for rotational BCP, experience with RFD cavity I

- Visual inspection after light rotational BCP showed the inner surface has a uniform matte looking.
- No signs of long and big bubble traces: slow rotation is preventing big bubbles formation in the acid mixture!
- No signs of residue, air pockets or bubbles on the RF surface

2008/01/01 09:11:19

Rotational BCP tool for RFD cavity at ANL

Beamtube2 view

Reasons for rotational BCP, experience with RFD cavity II

- Material removal has been compared between the two BCP procedure: AVG removal is 48 microns for ANL, 40 microns for conventional BCP.
- Uniform removal confirms better process compared to BCP prformed on static RFD: Standard deviation in etch data drops going from conventional to rotating cavity BCP.

Location	ANL BCP 48 µm	conventional BCP 40 μm
HHOM	46.1	22.5
VHOM	55.0	58.6
FPC	48.6	28.4
BODY	44.5	25.1
POLE (left)	51.8	26.2
POLE (right)	51.3	28.7
MAX	66	213.7
MIN	25.4	8.5

Innovative techniques: Plasma Processing for MP reduction

- Reducing FE by increasing work function of cavity RF surface
 - Hydrocarbon contaminants observed on all Nb cavities
 - Hydrocarbons and adsorbates lower work function of Nb
- Enabling operation at higher accelerating gradients
- Potential benefits for multipacting barrier mitigation

$$j = \beta \frac{AE^2}{\Phi} e^{-B\frac{\Phi^{3/2}}{\beta E}}$$

$$dj = 0$$
 $\frac{dE_{acc}}{E_{acc}} \approx \frac{3}{2} \frac{d\Phi}{\Phi}$

J: current density

E: surface electric field

 Φ : work function

 β : enhancement factor (\approx 10 to 100)

A,B: constants

Increasing Φ by 10 % means increasing E_{acc} of about 15 %

M. Doleans et al. NIMA 812 (2016) 50-59

Plasma ignition experience at FNAL: 1.3 GHz 9-cell cavities

Plasma has been ignited in each cell of a 1.3 GHz cavity using HOMs

The technique has been validated for 1.3 GHz 9-cell cavities, ignition curves for both Ar and

Ne at different pressures have been measured

 Plasma ignition power has been measured for LCLS-II cavities using different HOMs, P_{FWD} as low as 10 W!

Plasma processing results at FNAL: cleaning carbon contaminants

Test on single cell cavity:

- contaminated with Aquadag (carbon based conductive paint) on Iris locations
- Plasma processing 1-cell for 17 hrs.

HOMs plasma ignition in SSR1 spoke cavities

- Spoke resonators may benefit from plasma cleaning (MP processing, FE), usually Q_0 at RT is \approx 5E3: lower than multi-cell structure \rightarrow coupler-cavity mismatch very high at RT.
- HOMs can couple to FPC better than fundamental mode at RT!
- Drawback: HOMs in spoke cavities have complicated field distribution...see example below.

Example of Volume and Surface field distribution of HOM in SSR1 (FNAL)

S11 measurements of SSR1 FPC

Plasma ignition SSR1 spoke cavity

• Ar at 250 mTorr requires RF power ranging from ≈2W to ≈30W (depending on the mode) to ignite glow

discharge.

Plasma distribution follows electric field distribution.

Correct mix of modes to ignite areas of interest:

- accelerating gaps

- spoke base

- spoke side

- cylindrical shell

Conclusions

- Rotational BCP appears to be superior to conventional BCP:
 - Controllable etching rate, <u>material removal uniformity improves drastically</u>
 - Surface finish still matte, no bubble streaks or air pockets with rotation
- Fundamental to initiate technology transfer to cavity vendors to improve cavity surface preparation for PIP-II and future particle accelerators (low-beta and low frequency cavities)
- FNAL is looking into developing rotational BCP at cavity vendor
- Plasma processing has been successfully implemented at FNAL (LCLS-II),
 plasma ignition successful on SSR1 cavity!
- Plasma cleaning effects on the Nb SEY will be studied → huge benefit in conditioning cavities before test/operation

